Common Misconceptions in Aerodynamics: Part 3
The claim: The principles of fluid dynamics that govern airflows are simple to understand; therefore, aerodynamics as a whole are actually simple. Anyone who says or thinks aerodynamics are complicated is just muddying the waters.
There's so much wrong in this forum post, I'm not even sure where to start. |
The reality: Hand-in-hand with the idea that airflows can be predicted and low drag is as simple as following a template, the belief that aerodynamics are easy to understand (a prerequisite for their ease of prediction) is just as erroneous. The aerodynamic force exerted on a body like a car arises from the pressures acting on it. Pressure times area gives a force; integrating all the tiny little forces created by the airflow everywhere on the body sums to a resultant force acting on an imaginary point called the “center of aerodynamic pressure,” and this force can be divided into components along the three dimensions: drag/thrust (x), lift/downforce (z), and sideforce (y). The force arises from pressures acting on every surface of the body, ie its “wetted area” or everything exposed to the flow. As AJ Scibor-Rylski wrote in Road Vehicle Aerodynamics (1975)—one of the first books dealing with vehicle aerodynamics specifically— “The aerodynamic force is the net result of all the variably distributed pressures which the airstream exerts on the car surface.”
On a higher level, even predicting the change in airflow by altering a body geometry parameter is next to impossible without long experience with similar bodies and similar changes, and even then longtime aerodynamicists can be surprised by the behavior of a particular car. For example, JP Howell reported, in Sustainable Vehicle Technologies (2012), testing an Audi A2 in two different wind tunnels and finding in both that lowering the ride height did not reduce drag—something that surprised him since it does on most cars and is often repeated as a “rule of thumb” online. Because of the particular shape of the A2, its aerodynamics didn't respond in the same way as a lot of other cars--something that is only discoverable through testing.
If you’re ever feeling masochistic, have a read through the last few chapters of Scibor-Rylski’s Road Vehicle Aerodynamics. Scibor-Rylski was one of the first researchers to attempt mathematical modeling of the aerodynamic forces acting on a car traveling over a curved section of road in a constant wind. Make sure you review your calculus and engineering dynamics first, have a pencil and paper handy, be familiar with terms like “slip angle” and “steering angle” and the difference between them, understand the difference between forces and moments and have a solid theoretical grasp on the three dimensions of both linear forces and moment axes, and be familiar with the author’s specific variable scheme to represent all these. Sound easy? It isn’t. And this is just a simplified mathematical representation of a single case.
My attempt to follow along with Scibor-Rylski's model. Note the unrealistic assumptions, such as CG and CP height being the same. |
Comments
Post a Comment